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We analyse the low-mode structure of internal tides generated in laboratory experi-
ments and numerical simulations by a two-dimensional ridge in a channel of finite
depth. The height of the ridge is approximately half of the channel depth and the
regimes considered span sub- to supercritical topography. For small tidal excursions,
of the order of 1% of the topographic width, our results agree well with linear theory.
For larger tidal excursions, up to 15 % of the topographic width, we find that the scaled
mode 1 conversion rate decreases by less than 15 %, in spite of nonlinear phenomena
that break down the familiar wave-beam structure and generate harmonics and
inter-harmonics. Modes two and three, however, are more strongly affected. For this
topographic configuration, most of the linear baroclinic energy flux is associated
with the mode 1 tide, so our experiments reveal that nonlinear behaviour does not
significantly affect the barotropic to baroclinic energy conversion in this regime, which
is relevant to large-scale ocean ridges. This may not be the case, however, for smaller
scale ridges that generate a response dominated by higher modes.

1. Introduction
Oceanic internal tides are baroclinic wave fields of tidal period generated by

barotropic tidal flow past sea-floor topography. They are believed to play an important
role in oceanic mixing processes (St.Laurent & Garrett 2002). As such, there is a need
to accurately model internal tide generation, in order to estimate the energy transfer
from barotropic to internal tides. One conclusion drawn from field studies (Rudnick
et al. 2003), satellite observations (Egbert & Ray 2000) and numerical simulations
(Simmons, Halberg & Arbic 2004) is that steep nominally two-dimensional ocean
ridges contribute significantly to the internal tide budget. This is primarily because
barotropic tides are forced to flow over them, rather than being able to go around,
thereby generating strong disturbances of the stratification.
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While a principal focus has been to obtain accurate estimates of the energy flux into
internal tides (Garrett & Kunze 2007), there are other aspects of the generation process
that also demand investigation. An important one is the form of the internal wave
field generated, as it is not clearly understood where and how internal tide energy is
ultimately dissipated (Kunze & Llewellyn Smith 2004). The prime candidates are local
mixing near generation sites, wave–wave interactions in the deep ocean, scattering by
sea-floor topography or mesoscale features in the ocean and reflection at continental
shelves. Determining the role of each of these candidates requires that the structure,
and not just the energy flux, of radiated internal tides is well captured by models.

A means of characterizing the structure of an internal tide in a finite-depth ocean
is to decompose it into the vertical basis modes of the local density stratification. This
technique is regularly applied to oceanographic data (Nash, Alford & Kunze 2005).
Low modes (i.e. modes with a relatively large vertical length scale) have been found
to propagate far away from generation sites (Ray & Mitchum 1997), and are thus
able to participate in wave–wave interactions, scattering or reflection from continental
shelves. In contrast, higher modes (i.e. modes with a relatively small vertical length
scale) propagate more slowly, are more susceptible to instability and could contribute
to local mixing near the generation site. This local mixing, however, is postulated to
not significantly impact the radiation of low modes, which, in configurations where
the topography is tall with respect to the ocean depth, transport a majority of the
internal tide energy away from the generation site (Kunze & Llewellyn Smith 2004;
Di Lorenzo, Young & Llewellyn Smith 2006).

One current analytical model of internal tide generation is a Green’s function
approach to solve for linear periodic wave fields generated by an arbitrarily steep
topographic feature in a finite-depth ocean (Pétrélis, Llewellyn Smith & Young 2006).
The approach is restricted to regimes with a linear background stratification, although
a separate methodology exists for the limiting case of knife-edge topography, for which
tractable solutions may be obtained for arbitrary stratifications (Llewellyn Smith &
Young 2003). The far-field tidal excursion δ (half the peak-to-peak excursion) is
assumed to be small such that, except for the extreme case of a knife-edge barrier,
the excursion parameter

χ =
δ

a
, (1.1)

where a is a characteristic (one-sided) horizontal length scale associated with the
topography, is also small. Two additional dimensionless parameters that naturally
arise are the criticality ε (i.e. ratio of the maximum topographic slope to the internal
ray slope) and the depth ratio Λ/h (i.e. ratio of the maximum topographic height Λ

to the ocean depth h). Estimates of the energy flux and modal structure of internal
wave fields can be made based on these latter two parameters. The model predicts
singular features for critical and supercritical topography, however, and it is not clear
what their physical implications are.

Herein, we examine the excitation of internal tides by a Gaussian ridge with depth
ratio Λ/h ≈ 0.5, which is relevant to important sites of internal tide generation such as
Hawaii; and focus on the generation of low modes (1–3) in a linear stratification. We
investigate experimentally and numerically the radiated modal amplitudes and phases
as functions of the criticality and the excursion parameters and make comparisons
to the linear theory of Pétrélis et al. (2006), accounting for the effect of molecular
viscosity in a lab-scale experiment. Beginning with a brief review of relevant theory in
§ 2, we move on to describe the experimental arrangement and methods in § 3, and the
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numerical methods in § 4. In § 5, we directly compare our experimental and numerical
results for small excursion parameters with each other and with analytical predictions.
We perform modal decompositions of this data in § 6. Then, in § 7, we present the
results of investigations in which the excursion parameter was systematically increased,
seeking to identify how modal decomposition is influenced by increased nonlinearity
of the wave field. Finally, in § 8 we present our discussion and conclusions.

2. Linear theory
The far-field streamfunction generated by tidal flow over an isolated two-

dimensional ridge in a linearly stratified finite-depth ocean is

ψ(X, Z, t) = U Real{e−iω0t φ}, (2.1)

where

φ(X, Z) =
h

π

∞∑
n=1

γn

n
sin(nZ) einX, (2.2)

the tidal frequency is ω0 and the magnitude of the barotropic tidal flow velocity in the
far field is U = δ ω0 (Pétrélis et al. 2006). The stretched non-dimensional vertical (Z)
and horizontal (X) coordinates are defined in terms of their dimensional analogues x

and z via

Z =
π z

h
, X =

π x

μ h
, (2.3)

in which

μ =
N√

ω2
0 − f 2

, (2.4)

the Coriolis frequency is f and the buoyancy frequency is N . The topography-
dependent weight functions γn are the (complex) mode strengths for positive integer
values of n.

For the purpose of comparison with our experiments, γn are calculated for an
isolated, two-dimensional Gaussian ridge,

zG =

{
Λ

1−e−8

[
exp

(
− x2

2σ 2

)
− e−8

]
|x| � 4σ

0 |x| > 4σ
, (2.5)

where Λ is the ridge height and

σ =
Λ

e1/2 (1 − e−8)
, (2.6)

so that the maximum topographic slope is 45◦. This ridge is of compact, rather than
infinite, horizontal extent because of the e−8 term. Such a restriction is necessary to
guarantee a unique solution. We set

a = 2σ =
2Λ

e1/2 (1 − e−8)
, (2.7)

as the characteristic half-width of the topography. The criticality parameter becomes

ε = tan Θ, (2.8)



94 P. Echeverri, M. R. Flynn, K. B. Winters and T. Peacock

in which Θ , the angle of the wave beam to the vertical, is given by

Θ = cos−1

√
N2 − f 2

ω2
0 − f 2

= tan−1

(
mn

kn

)
, (2.9)

and kn and mn are the horizontal and vertical wave numbers. By virtue of the rigid-lid
boundary condition, mn assumes the discrete values:

mn =
n π

h
, n = 1, 2, 3, . . . , ∞. (2.10)

Whereas the theoretical solution given above is applicable for studying tidal
conversion by topography on geophysical scales, three modifications must be
considered for comparison with our laboratory measurements. First, the experiments
are non-rotating, so that f = 0. Second, in our experiments ω0 and N are of the same
order of magnitude, so we retain non-hydrostatic terms by redefining the parameter
μ of (2.4) as

μ =

√
N2 − ω2

0

ω0

. (2.11)

Finally, for our experiments the Reynolds number, Re =U Λ/ν (where ν is the
kinematic viscosity), lies in the range 50 � Re � 850. As such we include inside the
sum of (2.2) a viscous damping factor

exp

{
−X ν

2ω0

n3

(
π

h

)2 [
N2

N2 − ω2
0

]2
}

. (2.12)

The modified φ(X, Z) satisfies the viscous governing equations everywhere and the
inviscid, no-normal flow condition at the boundaries. Therefore, the above damping
factor is a viscous correction to the propagating wave field, but it does not remove
singularities from the theoretical solution at the location of wave generation. As with
the analyses of Lighthill (1978), Hurley & Keady (1997), Flynn, Onu & Sutherland
(2003) and Peacock, Echeverri & Balmforth (2008), (2.12) provides aggressive damping
of high vertical modes (n � 4).

Incorporating these considerations, the theoretical far-field vertical (w = ∂ψ/∂x)
and horizontal (u = − ∂ψ/∂z) components of velocity are

w(X, Z, t) =
U

μ
Real

{ ∞∑
n=1

γn fn sin(nZ) ei (nXfn−ω0t+π/2)

}
, (2.13)

and

u(X, Z, t) = −U Real

{ ∞∑
n=1

γn cos(nZ) ei (nXfn−ω0t)

}
, (2.14)

respectively, where

fn = 1 +
i ν

2ω0

(
n π

h

)2 [
N2

N2 − ω2
0

]2

. (2.15)

Note that for small n and non-vanishing μ, γn fn � γn and thus in (2.13) the impact
of viscosity is principally through the exponential term.
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Figure 1. Schematic of the experimental set-up (front view). The topography is a foam
Gaussian ridge of maximum height Λ= 0.098 ± 0.001 m, mounted ‘upside down’ directly to a
linear traverse.

3. Experimental set-up
Experiments were conducted in a 5.5 m × 0.69 m × 0.51 m glass wave tank. A

linear salt-water stratification was established using Oster’s ‘double bucket’ technique
(Oster 1965). Three independent sets of experiments were conducted, for which
we aimed to maintain a fixed stratification. The average buoyancy frequency
was N = 1.03 ± 0.04 rad s−1, as measured using a calibrated precision measurement
engineering (PME) conductivity probe, and verified by determining the wave beam
angle for a known topographic oscillation frequency. Blocksom Filter matting was
placed at both ends of the wave tank to effectively damp end-wall reflections.

Internal waves were generated by oscillating a two-dimensional rigid foam topo-
graphy in the horizontal plane a millimetre or two below the free surface, as illustrated
in figure 1. For the small variations in density considered here, this arrangement is
equivalent, through a change of reference frame, to a fixed topography placed ‘right-
side up’ with a tidal flow oscillating back and forth (Spiegel & Veronis 1960; Aguilar &
Sutherland 2006). The styrofoam block, of total length 2.05 m, was cut into the shape
of a Gaussian ridge with Λ = 0.098 ± 0.001 m and a maximal topographic slope
of 45.0◦ ± 1.5◦. The channel depth far away from the ridge was h = 0.196 ± 0.001 m,
giving a depth ratio Λ/h= 0.50 ± 0.01 that was held fixed for the experiments reported
here. Internal wave generation by the free ends of the foam block was found to be
insignificant.

The block was oscillated horizontally using a Parker linear traverse connected
to LabVIEW. In the present study we were interested in the internal wave field
response to changes in criticality and excursion. Thus, the forcing frequency and
amplitude of oscillation were systematically varied. Peak-to-peak amplitudes were in
the range 1.0 × 10−3 m � 2δ � 35.0 × 10−3 m, corresponding to excursion parameters
0.004 � χ � 0.147. To mitigate initialization transients, the amplitude of oscillation
was ramped up to 99 % of its final value over five periods of oscillation (T ), via the
motion

xt = δ sin(ω0t)(1 − e−t/Tspin ), (3.1)

where Tspin = 7T/2π. Recording of the experimental wave field was started 10T

after the end of the ramp-up, at which point tests showed that the wave field was
periodic. The fastest mode 1 signal generated during these experiments travelled at
cg,1 = 5.6 ± 0.3 cm s−1 (where cg,n = Nh sin3 Θ/nπ is the horizontal group velocity of
mode n) and had time to reach the end of the tank and reflect back into the field of
view. The modal decomposition of wave fields before and after reflections could return
into the field of view were consistent, however, confirming that the end-wall matting
was effectively damping the reflections. The frequency ω0 was selected such that the
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wave beams propagated at angles to the vertical in the range 30◦ ± 2◦ � Θ � 60◦ ± 1◦,
corresponding to 0.57 ± 0.05 � ε � 1.73 ± 0.05.

Particle image velocimetry (PIV) was used to measure the experimental velocity
field. The stratified fluid was seeded with 10 μm glass spheres of typical density
1.03 kg m−3. These particles were visible when illuminated with a sheet of pulsating
laser light from a class-4, ND-Yag Big Sky laser. As the internal waves propagated
through the stratification, the motion of the particles was captured using a LaVision
ImagerProX4M camera synchronized with the laser pulses and controlled via the
LaVision DaVis imaging software. Experimental movies were captured at frame
rates such that a snapshot of the velocity field was obtained 16, 32 or 64 times per
period, with progressively finer time resolution selected as δ increased. Typical particle
displacements between images were of the order of 10 pixels.

The measured wave field covered very nearly the entire vertical domain of the
tank and a horizontal domain that spanned at least a 10 cm wide region within
0.17 m � x � 0.36 m; x =0 being the centre of the topography. Due to the bright
reflection of the laser light on the top and bottom boundaries, there were narrow
boundary regions (no wider than 8 mm) where particles could not be visualized and
we were unable to obtain velocity measurements.

4. Numerical model
The two-dimensional numerical experiments were based on laboratory-scale

numerical solutions of the non-hydrostatic equations of motion for a density-stratified
fluid in the Boussinesq limit:

∂u
∂t

+ u · ∇u + k̂
g

ρ0

ρ = − 1

ρ0

∇p + ν∇2u + FS + îF, (4.1)

∂ρ

∂t
+ u · ∇ρ = κ∇2ρ, (4.2)

∇ · u = 0. (4.3)

Here u is the velocity vector, ρ is the density deviation from the reference value ρ0

and p is the pressure. The viscosity ν and diffusivity κ were both set to 10−6 m2 s−1.
In contrast to the laboratory experiments, the Gaussian topography zG was fixed

in space and specified via the smooth function

zG(x) = Λe− 1
2 (

x
σ )

2

, (4.4)

where the parameters Λ =9.80 cm and σ = 5.94 cm match the laboratory configu-
ration. The surface zG(x) was immersed in a slightly extended computational domain
z ∈ [−�, h] where h = 19.7 cm as in the laboratory tank and � is a modelling
parameter set to 10 % of h. No-slip boundary conditions were imposed on the flow at
the immersed boundary. Below the immersed boundary the (non-physical) flow was
held motionless. The upper boundary z = H was taken as a free-slip rigid lid.

A uniform stratification matching the laboratory experiments was prescribed for a
fluid initially at rest. A time-oscillating horizontal flow was excited for t > 0 via the
body force F(t) in (4.1), which was consistent with the motion of the topography
in (3.1):

F = A sin(ω0t)
(
1 − e−t/Tspin

)
. (4.5)

The numerical values for A and ω0 were set to match χ and ε in the laboratory
experiments.
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At the ends of the computational domain, x = ± L/2, the stream-wise derivative
∂/∂x was set to zero for all fields. In general, waves propagating away from the
sill crest would be reflected from such boundaries. To prevent this, an artificial
damping term FS(x, t) was used to gently damp the outward propagating waves as
they approached the boundaries. These damping terms are only appreciably non-zero
within regions of finite width adjacent to the boundaries. For example, the damping
term in the vertical momentum equation near x = − L/2 was

−e−[(x+L/2)/λ]2w(x, z, t)/Tdamp, (4.6)

with the right boundary treated comparably. Similar terms were used to damp ρ while
no explicit near-boundary damping is applied to either the streamwise component u

or to p. The utility of the damping scheme was controlled by the width parameter
λ and the damping time scale Tdamp . Waves reflect from sponge regions that are too
abrupt while excessively short damping time scales generate numerical instabilities.
Preliminary experiments were run varying the domain size L along with the damping
parameters to determine reasonable choices. For the numerical experiments reported,
L = 5 m, λ= 5σ and Tdamp =0.1 s.

The spatial discretization was held fixed across the different experiments with
nx = 10239 and nz = 513, corresponding to grid spacings of dx ≈ 0.488 mm and
dz ≈ 0.4275 mm in the horizontal and vertical, respectively. The grid spacings were
chosen to ensure at least two grid points within the nominal viscous boundary layer
over the topography, which has an approximate scale

√
ν/ω0 ≈ 1.0 − 1.4 mm; and

dx, dz were of comparable size because the ridge has a maximum slope of 45◦. The
time step varied between experiments. For the smallest values of χ , dt was set to
1/512 of the forcing period, and this decreased linearly with increasing χ . The use of
an immersed boundary within a vertically extended computational domain, coupled
with the isolation of the lateral boundaries via damping terms permits expansion of
unknowns in terms of odd and even Fourier series. Raw results were subsampled
and time averaged to match the spatial and temporal resolution inherent in the PIV
measurements in the laboratory.

5. Results for small excursion
Figures 2(a) and 2(d ) show, respectively, experimental velocity fields for subcritical

(ε =0.70 ± 0.04) and supercritical (ε = 1.73 ± 0.05) topographies with χ = 8.4 × 10−3.
The velocity fields are presented in the frame of reference in which the topography
is stationary and the phase of tidal forcing Ω =0◦, corresponding to the maximum
tidal flow in the positive x direction. Colours and arrows indicate, respectively, the
magnitude and direction of the perturbation velocity field normalized by the far-
field tidal velocity. Blank regions demarcate areas that were either outside of the
camera’s field of view or obscured by laser reflections. Figures 2(b) and 2(e) present
the corresponding numerical wave fields, and figures 2(c) and 2(f ) the corresponding
far-field theoretical solutions (2.13) and (2.14). The experimental data was obtained in
regions of constant depth away from the topography, and the theoretical data, which
is only formally valid in the far field, is shown for the same domain. The numerical
snapshots are presented for a larger horizontal domain since the data was readily
available.

For the subcritical case, illustrated in figure 2(a–c), away from the ridge a
single dominant wave beam propagates to the right at an angle Θ = 35◦ ± 2◦. Near
the ridge (figure 2b), we also see a left-propagating wave beam generated over the
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Figure 2. Snapshots of the velocity perturbation u/U to the far-field barotropic tide, with
ε = 0.70 ± 0.04 (a–c) and ε = 1.73 ± 0.05 (d–f ). Experimental, numerical and theoretical results
are shown, respectively, in the top, middle and bottom rows. Colours and arrows indicate
the instantaneous magnitude and direction of velocity. I and II indicate vertical cross-sections
where direct comparisons are made in figure 3.

right-side slope. For the supercritical case illustrated in figures 2(d–f ), a pair of
internal wave beams propagate to the right and both up and down with Θ = 60◦ ± 1◦.

For both the sub- and supercritical cases, the form of the wave beams agrees for
experiments, numerics and theory. The simulated wave fields are a little weaker than
the experimental observations, however, and in the supercritical case the theoretical
wave field is a little stronger. We attribute the latter to the fact that, despite our
viscous correction of (2.12), the theoretical supercritical solution generates a singular
wave field at the critical slope; an aspect of the theory that is not present in the
experiments or simulations. The present results are consistent with previous studies
in which theory often slightly overpredicts the peak strength of wave beams as
compared to experiments (Flynn et al. 2003; Zhang, King & Swinney 2007 and
Peacock et al. 2008).

In figure 3, we show vertical cross-sections of the vertical velocity w at locations I
and II indicated in figure 2. These profiles are presented at two different phases of the
tidal oscillation in figures 3(a–d ) for the subcritical case; and in figures 3(e–h) for the
supercritical case. The experimental profiles were averaged over 17 cycles to reduce
the effect of experimental noise. Good agreement between the theory (solid curves),
experiment (dashed curves) and numerics (dotted curves) is generally observed. The
supercritical profiles, for example, are in particularly close agreement at Ω = 90◦
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Figure 3. Cross-sections of the vertical velocity field w/U for ε = 0.70 ± 0.04 (a–d ) and
ε = 1.73 ± 0.05 (e–h). Panels in a column are taken at the same cross-section, respectively
(from left to right): I and II for the subcritical wave field and I and II for the supercritical
wave field. Cross-sections I and II are defined in figure 2. The lines correspond to the theoretical
solution (solid), experimental data (dashed) and numerical data (dotted).

(figure 3h), with the theoretical peak a little stronger and sharper. In some other
comparisons, however, the agreement is weaker. For the subcritical case at Ω = 90◦

(figure 3c), for example, theory predicts a strong downward flow at mid-depth, below
which there is a quick reversal to an upward flow. In contrast, the experiments reveal
a weaker downward flow at mid-depth, below which there is a stronger upward
flow. The numerical results lie in between. We investigated possible reasons for these
discrepancies: (i) uncertainty in the phase of the experimental wave fields, which
were sampled at 16 frames per cycle; and (ii) uncertainty in the criticality parameter
and depth ratio of the experiments. Neither of these, however, could account for
the observed errors. As our later studies show, the discrepancies are associated with
differences in the high-mode content of the wave field.

These spatial comparisons are complemented by temporal comparisons presented
in figure 4. Figures 4(a–c) and 4(e–f ) show experimental, numerical and theoretical
time-series for the vertical velocity profiles at location I, for the sub- and supercritical
experiments, respectively. The corresponding depth-averaged Fourier spectra of the
experimental and the numerical data, obtained using either 17 or 18 tidal cycles, are
presented in figures 4(d ) and 4(h). Not surprisingly, in both cases strong peaks are
observed at the fundamental frequency ω0, where experiments and numerics agree
to within 3.5 % for the subcritical case and 2.7 % for the supercritical case. Higher
harmonics 2ω0 and 3ω0, which are evanescent for these experiments, are of relatively
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Figure 4. Vertical time-series and depth-averaged Fourier spectra of w/U at cross-section
I (see figure 2). Time-series from (a) experiments, (b) simulations and (c) theory for
ε = 0.70 ± 0.04; and (d ) corresponding depth-averaged spectra. Time-series from (e) experi-
ments, (f ) simulations and (g) theory for ε = 1.73 ± 0.05; and (h) corresponding depth-averaged
spectra.

small amplitude, indicating that the wave field is dominated by waves of frequency
ω0 and can be reasonably considered linear. Similar qualitative results (not shown)
were found at location II.

6. Modal decomposition
6.1. Implementation

One can recover mode strengths γn = |γn| eiφn from vertical velocity measurements such
as those presented in the previous section. We first select a horizontal location and
absorb Real(nX fn) = nX and the phase shift of π/2 in (2.13) into a phase function
φ̂n =φn +nX+π/2. Projecting the vertical velocity profile onto the sinusoidal vertical
basis modes of the linear stratification yields

��n ≡
∫ π

0

w sin (nZ) dZ =

(
π U

2μ

)
|γn| e−nX Imag(fn) Real{fn ei (φ̂n−ω0 t)} . (6.1)

Equation (6.1) can be solved for |γn| by multiplying by cos (θn − ω0 t) and choosing
the value of θn that maximizes the integral

2

tmax

∫ tmax

0

��n cos (θn − ω0 t) dt , (6.2)

where tmax consists of a complete number of wave periods associated with the
fundamental frequency ω0. The critical values of θn give the phases φn for the corres-
ponding vertical modes.
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Equation (6.2) filters internal waves of frequency 2ω0, 3ω0, etc. which arise at
the generation site (Lamb 2004; Legg & Huijts 2006) and at points of wave
beam intersection or reflection (Peacock & Tabaei 2005; Tabaei, Akylas & Lamb
2005). Although (6.2) does not remove inter-harmonic internal waves, for our small-
amplitude experiments these were at least an order of magnitude smaller than the
harmonic frequencies (see figure 4 and also figures 8 and 9 of Legg & Huijts 2006).

As indicated by the results in figures 2(a) and 2(d ), the bottom 4 % and top 2 % of
the experimental images were inaccessible because of laser sheet reflections. Strictly
speaking, the standard Fourier decomposition of (6.1) cannot be applied because the
trigonometric basis functions are not orthogonal over the truncated vertical domain.
Consequently, non-orthogonal Fourier series integrals are employed:

∫ π (h−β)/h

π α/h

w sin (nZ) dZ =

∞∑
m=1

Υmn ψm. (6.3)

Here α and β reflect the degree of image loss near z = 0 and z = h, respectively, and
the modal matrix Υnm is

Υnm =

∫ π (h−β)/h

π α/h

sin (nZ) sin (mZ) dZ, (6.4)

leaving

ψm =
U

μ
|γm| e−mX Imag(fm) Real{fm ei (φ̂m−ω0 t)} . (6.5)

Equation (6.3) represents a system of n linear equations, which can be solved for
{|γm|, φm}. As Υnm is diagonally dominant for reasonable choices of α and β , the
infinite series of (6.3) was satisfactorily truncated after ten terms.

Since w → 0 as the ray slope becomes horizontal, the signal-to-noise ratio was small
in experiments with Θ � 60◦, which restricted our ability to extract modal amplitudes
for highly supercritical topography. In principle, one could also obtain estimates of
|γn| and φn from measurements of the horizontal velocity field. However, owing to
the different trigonometric basis functions (i.e. cos(nZ) versus sin(nZ)), we found that
estimates of the mode strengths obtained using u were much more susceptible to
image loss and to thin boundary layers that, in the experiment, impose a no-slip
boundary condition on both surfaces.

For the results presented in § 6.2, we accepted only data for which consistent
measurements of both |γn| and φn were obtained across the entire horizontal domain
of the experiment. Instances of inconsistent data were rare and did not arise in repeat
experiments for linear internal waves and vertical modes n= 1, 2 and 3. On the other
hand, it was difficult to obtain consistent results for n � 4 from both experiments and
numerics. One reason for this is that, as discussed in § 2, viscous damping impacts high
modes much more significantly than low modes. While this effect can be accounted for
theoretically (e.g. by normalizing measured mode strengths by the exponential term
of (2.12)), this requires dividing by small quantities and leads to non-trivial absolute
errors. In light of these observations and the conclusions of Di Lorenzo et al. (2006)
that ‘radiated energy is [most] heavily concentrated’ in the low vertical modes, we
focus on the vertical modes n= 1, 2 and 3.
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Figure 5. Modal amplitudes and phases for n= 1, 2 and 3 with Λ/h = 0.50 ± 0.01 and
χ � 1.68×10−2. The theoretical solution is given by the dotted (Λ/h = 0.49), solid (Λ/h = 0.50)
and dashed (Λ/h = 0.51) lines. The horizontal lines shown in the upper left hand corner of
the top three panels indicate typical errors in ε.

6.2. Application to experimental and numerical data

Figure 5 shows modal amplitudes and phases for n= 1, 2 and 3 as a function of
ε for experiments (triangles) and numerics (circles). Horizontal error bars reflect
representative errors in ε for the laboratory experiments and vertical error bars
reflect measurement variations in sampling at 20 evenly spaced horizontal locations
(and in some cases multiple experiments), covering at least 0.10 m in the range
0.17 m � x � 0.36 m. Superimposed are the theoretical solutions derived from Pétrélis
et al. (2006); the thin curves indicate the uncertainty in the depth ratio to which
supercritical modal amplitudes are quite sensitive. The theoretical curves are not,
in general, smooth functions because the system of linear equations whose solution
specifies γn contains a matrix (different from the diagonally dominant matrix Υnm of
(6.4)) that may become ill-conditioned for select choices of ε. Hence, small-scale noise
is introduced that does not diminish as the number of modes (i.e. the resolution)
is increased. Notwithstanding these distractions, the agreement between theory and
experiment is good, almost always falling within the scale of the horizontal and
vertical error bars. There is, furthermore, favourable agreement with results obtained
from applying the modal decomposition algorithm to the numerical results. A couple
of minor discrepancies exist: for example, φ1 is consistently higher for the numerical
as compared to the theoretical and experimental data. On the other hand, there are
cases where experiment and numerics closely agree on a result that is different from
theory: for example, for |γ2| at the critical case ε = 1.00 ± 0.04.



Low-mode internal tide generation by topography 103

0.5 1.0 1.5 2.0
0

0.5

1.0

1.5

ε

(a)
�

* 1

�
* 1
+

2

�
* 1
+

2
+

3

0.5 1.0 1.5 2.0
0

0.5

1.0

1.5

0

0.5

1.0

1.5

ε
0.5 1.0 1.5 2.0

ε

(b) (c)

Experiment
Numerics

Figure 6. Non-dimensional tidal power converted into baroclinic low modes: (a) mode 1
(C∗

1), (b) modes 1 and 2 (C∗
1+2) and (c) modes 1 through 3 (C∗

1+2+3) versus ε. The thin lines
correspond to the model solution with Λ/h = 0.49 (dotted), Λ/h = 0.50 (solid) and Λ/h = 0.51
(dashed). The thick dashed line (which is identical in the three panels) shows the approximate
total predicted energy conversion rate for Λ/h = 0.50, obtained by truncating the sum in (6.6)
after 20 terms. Data points and error bars are as indicated in figure 5.

6.3. Linear energy flux

The rate of energy conversion can be calculated from experimental and numerical
estimates of the mode strengths. More specifically, by adapting (2.31) of Pétrélis et
al. (2006) to a non-hydrostatic wave field, it can be shown that

C∗ =

∞∑
n=1

γn γ̄n

n
=

2πC
ρ U 2 h2

√
N2 − ω2

, (6.6)

where the overbar indicates a complex conjugate, C is the total converted tidal power,
measured in Watts per unit ridge length and C∗ is the corresponding non-dimensional
result. By truncating the series of (6.6), we can determine the non-dimensional tidal
power converted into, say, mode 1 (C∗

1); modes 1 and 2 (C∗
1+2); or modes 1, 2 and

3 (C∗
1+2+3). Figures 6 (a) to (c) respectively show C∗

1, C∗
1+2 and C∗

1+2+3 as functions
of ε. The energy conversion increases with ε, a trend that is supported by both the
experimental (triangles) and numerical (circles) results. Most of the energy content is
contained in mode 1. The agreement between measurement and theory is very good
for wave fields over subcritical and critical topography; there is a more noticeable
discrepancy for the supercritical case that is associated with the differences in the
amplitude of mode 1 reported in figure 5. Overall, the level of agreement is on a
par with the analysis of Di Lorenzo et al. (2006), who compared theoretical tidal
conversion rates against the output of a hydrostatic regional ocean modelling System
(ROMS) simulation.

7. Results for larger excursion
While there is good agreement between experiment, theory and numerical simulation

thus far, we find evidence of nonlinear effects even for small excursion parameters
(χ � 1.68 × 10−2). The frequency spectra in figures 4(d ) and 4(h), for example,
show higher harmonics that are not accounted for by a linear model. We therefore
systematically increased the excursion parameter by an order of magnitude or more to
enhance nonlinearity in the experiments and simulations, and studied the impact on
the radiated modal structure. Starting with χ = 0.0084, for subcritical topography we
increased the excursion to χ =0.084; and for supercritical topography we increased to
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Figure 7. Experimental snapshots of the velocity perturbation |u/U | for ε = 1.73 ± 0.05 and
(a) χ = 0.042, (b) χ = 0.084, (c) χ = 0.147.
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0.70 ± 0.04 and (b) ε = 1.73 ± 0.05; results for the corresponding simulations are presented in
(c) and (d ). The lines show spectra for χ = 0.0084 (dashed) and χ = 0.084 (solid); as well as
the location of ω0/N (thin solid).

χ = 0.168. For these larger values of χ , the coherent far-field wave beam pattern broke
down, as shown in figure 7. Associated with this, qualitative observations indicated
that the flow was no longer laminar over the top of the topography.

The signature of this nonlinear activity can be seen in the frequency content of
the radiated wave field. In figure 8 we present depth-averaged Fourier spectra of
the experimental and numerical vertical velocity fields at location I. For χ = 0.0084,
harmonic peaks are over an order of magnitude smaller than the peaks at the
fundamental frequency. For χ = 0.084, the relative magnitude of harmonic peaks
increases significantly; for instance, the power at the first harmonic becomes almost
half of the power at the fundamental frequency for the supercritical experiment.
Note that all the harmonics are either evanescent or at best vertically propagating
(i.e. the first harmonic for ε = 1.73 ± 0.05), so they are confined to the neighbourhood
where they are generated. The spectra shown in figure 8, therefore, do not contain
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Figure 9. Variation of the modal decomposition results with χ for (a, c) ε = 0.70 ± 0.04 and
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|γ3|, stars. Open and closed data points show experimental and numerical results, respectively.
Horizontal lines show linear theoretical estimates for modes 1 (solid), 2 (dashed) and 3 (dotted).

harmonics directly excited by the topography (Bell 1975), but instead generated
through nonlinearities, most likely at nearby wave beam reflections or crossings
(Peacock & Tabaei 2005; Tabaei et al. 2005; Legg & Huijts 2006; Korobov &
Lamb 2008). The relative amplitude of the inter-harmonic content also increases with
χ , although it remains weaker than the harmonic peaks. An interesting feature in the
spectra of the numerical subcritical wave field is the presence of well-defined sub- and
inter-harmonic peaks. The sum of the frequencies of the two subharmonic peaks is
equal to the fundamental frequency; and the frequencies of the inter-harmonic peaks
are equal to either the fundamental or a harmonic frequency plus the frequency of one
of the subharmonic peaks. Korobov & Lamb (2008) also report on such ‘self-similar’
spectra, and attribute the subharmonic peaks to a subharmonic parametric instability
and the inter-harmonic peaks to wave–wave interactions. These peaks are not present
in the experimental data, however, which contains a smoother distribution of inter-
harmonic content, with amplitude comparable to the amplitudes of the subharmonic
peaks in the numerical wave field.

In figure 9 we present modal decomposition amplitude and phase results for the sub-
and supercritical topography as a function of χ . We first consider the supercritical
results in figures 9(b) and 9(d ). Even up to the largest excursion parameter, the
modal decomposition method measured a consistent mode 1 structure across the
interrogation region from both experimental and numerical data, as indicated by the
small error bars. There is a small decrease of |γ1| with χ (at most 10 %, but typically
a lot less) for excursion parameters approaching χ = 0.168. The mode 1 phase, φ1, is
also hardly affected. We were also able to reliably measure amplitudes and phases
for modes 2 and 3. As with mode 1, an order of magnitude increase in χ yields little
change in |γ2| or φ2. There is a more substantial variation (∼ 50 %) in |γ3|, but |φ3|
is not noticeably affected.
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Results for subcritical topography, presented in figures 9(a) and 9(c), reveal a
slightly more noticeable effect on |γ1|; but even so, this decreases by only 10 %
in simulations and 15 % in experiments. The measured amplitudes |γ2| and |γ3| also
monotonically decrease with increasing excursion parameter. As with the supercritical
results, for both experiments and numerical simulations the mode 1 phase is weakly
influenced by the increasing excursion parameter, and agrees well with theory. There
is some scatter in the phase measurements of modes 2 and 3 for χ = 0.042. We
repeated this particular experiment and observed the same result, showing it was
robust, although notably different from numerics.

8. Discussion and conclusions
We have performed the first laboratory investigations of internal tide generation

by a two-dimensional ridge in a finite-depth and continuously stratified ocean. In
doing so, we developed and implemented a method to extract modal amplitudes
from experimental PIV data, accounting for practical difficulties such as incomplete
information in the vertical domain. This modal decomposition is a useful tool for
characterizing the structure of an internal tide, and furthermore provides a means
for estimating the linear energy flux. Our results presented in § 5 and § 6 demonstrate
good agreement between experiments, numerics and linear theory for the low-mode
structure of internal tides generated by sub- and supercritical topography in the limit
of a small excursion parameter.

Small discrepancies do arise even in the linear regime, however. These are manifest
as weak harmonics in the frequency spectra, and more obviously in comparisons
of vertical velocity profiles, in figure 3. These discrepancies cannot be accounted
for by the small uncertainties in our experimental parameters; we checked this by
computing the analytical solution for values of ε and Λ/h within error ranges. Our
modal decomposition results reveal that the observed discrepancies are not associated
with the low modes, for which there is agreement between experiment, theory and
numerics. Our conclusion, therefore, is that there is a mismatch of measured and
predicted modes for n � 4, which are the modes responsible for the fine scale features
of wave beams. This issue is difficult to probe in experiments because significant
viscous damping of high modes prevents us from reliably extracting the corresponding
modal amplitudes. Moreover, in critical and supercritical regimes linear theory is
singular, which is unphysical. We note that these small discrepancies have a minimal
effect on the measured and predicted energy flux for the canonical topographic
configuration considered (as shown in figure 6), consistent with observations by Di
Lorenzo et al. (2006) and Pétrélis et al. (2006) that the high modes do not significantly
impact the energy flux away from topography, which is dominated by the low modes,
and principally mode 1.

As the excursion increases to 15 % of the width of the ridge, the coherent wave
beam structure ultimately disappears. This is accompanied by a noticeable increase
in the harmonic and inter-harmonic content of the wave field. Remarkably, this
nonlinear activity has little impact on the amplitude and phase of the radiated
mode 1 tide. There is a more noticeable effect for mode 2 and even more so for
mode 3; namely, a steeper decrease in amplitude and some scatter in the phase of
the subcritical experiments. This suggests that nonlinear processes first influence the
medium-scale dynamics associated with the finer vertical scales of modes 2 and 3. All
modal amplitudes decrease with increasing χ , indicating that energy is drawn from
the internal tide at the fundamental frequency.



Low-mode internal tide generation by topography 107

Since mode 1 transports most of the energy away from the topography, and
its relative amplitude is little affected by increasing χ , we conclude that the energy
radiated away from the topography in these experiments is not significantly influenced
by nonlinear processes. This new insight reveals that the linear theory of Pétrélis
et al. (2006) reasonably predicts tidal conversion even for finite excursion parameters
where nonlinearities start to become evident, and is useful for the parameterization
of internal tide generation by topography with large depth ratios, such as Hawaii.
On the other hand, for a small and narrow topographic feature the internal wave
response is dominated by higher modes, as reported by Legg & Huijts (2006). As
such, in this ‘low-narrow’ regime, we expect the influence of nonlinearities to be felt
at comparably smaller excursion parameters.

There are, of course, differences between our experiments and the ocean; which
must be considered when trying to extrapolate these results. For practical reasons
we did not incorporate background rotation into the experiments, but this plays a
minimal role for most ocean generation problems, except near-critical latitudes where
the parametric subharmonic instability may be a first-order part of the response.
We also accounted for the impact of viscous dissipation in the laboratory, which
was negligible (∼1 %) for mode 1. Other notable differences, however, merit further
discussion. One concerns the fact that higher harmonics in our system are either
vertically propagating or evanescent and therefore do not transport energy away from
their point of generation. In contrast, in the ocean there is a multitude of propagating
higher harmonics. We were unable to access this regime in our experiments due mainly
to signal-to-noise issues at low beam angles. The lack of propagating harmonics in
the experiments has the benefit, however, of being able to clearly identify whether
the harmonics observed are generated directly by the topography (Bell 1975; Lamb
2004), or by wave–wave interactions away from the topography (Peacock & Tabaei
2005; Legg & Huijts 2006). We found significant harmonic content of the wave field
that could only have been generated in the far field.

Overall, our results support the use of linear models for predicting tidal conversion
rates even in transitional regimes with finite excursion parameter up to 15 %, providing
a useful guide for ocean modelling. An important issue for future experimental studies
is to investigate a non-uniform background stratification. In this case we anticipate
that the smaller scale structures of mode 1, which are localized in the vicinity
of the thermocline, could be more strongly impacted by nonlinear activity close
to the topography. Similarly, wave fields generated by smaller scale topographic
features will be dominated by higher-modes, and our experimental results indicate
that nonlinearities have a bigger impact in this regime.
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